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Abstract— In this work, we present a multi-class classification algo-
rithm for audio segments recorded from movies, focusing on the detection
of violent content, for protecting sensitive social groups (e.g. children).
Towards this end, we have used twelve audio features stemming from the
nature of the signals under study. In order to classify the audio segments
into six classes (three of them violent), Bayesian Networks have been
used in combination with the One Versus All classification architecture.
The overall system has been trained and tested on a large data set
(5000 audio segments), recorded from more than30 movies of several
genres. Experiments showed, that the proposed method can be used as an
accurate multi-class classification scheme, but also, as a binary classifier
for the problem of violent - non violent audio content.

I. I NTRODUCTION

During the last years, a huge increase of video data (but also
of all kinds of multimedia content) has occurred. The provided
multimedia content is becoming easily accessible by large portions
of the population, with limited central control. It is therefore obvious
that the need of protection of sensitive social groups (e.g. children)
is imperative. In this paper, we present a method for automatic
characterization of video content based on the audio information.

The task of detecting violence is difficult, since the definition
of violence itself is ambiguous. One of the most widely accepted
definition of violence is: ”behavior by persons against persons that
intentionally threatens, attempts, or actually inflicts physical harm”
([1]). In video data, most violent scenes are characterized by specific
audio signals (e.g. screams and gunshots). The literature related to
violence detection is limited and, in most of the cases, it examines
only visual features ([2], [3]). In [4] the audio signal is used as
additional information to visual data. In particular, a single audio
feature, namely the energy entropy, is used in order to detect abrupt
changes in the audio signal, which, in general, may characterize
violent sounds. Though, the usage of energy entropy as a feature
for violent detection can only be used in combination with other
audio or visual features, since it only detects abrupt changes and it
could therefore lead to the classification of a non violent impulsive
noise (e.g. a door closing) as violent. A more detailed examination of
the audio features for discriminating between violent and non-violent
sounds was presented in [5]. In particular, eight audio features, both
from the time and frequency domain, have been used, while the binary
classification task (violent and non violent) was accomplished via the
usage of Support Vector Machines.

In this paper, we have focused on more audio features in order
to detect violence in audio signals but also to give a more detailed
characterization of the content of those signals. Therefore, facing the
problem as a binary classification task (violent/non-violent) would
not be adequate. In addition, such a treatment of the problem would
be insufficient in terms of classification accuracy. For example the
sound of a non-violent impulsive sound (e.g. a thunder or a door
closing) is more similar to a gunshot (violent) than to speech (non

violent). It is therefore obvious, that the binary approach would lead
to the grouping of distinct sounds, which is undesirable. Thus, we
treat the problem as a multi-class audio classification problem. In
particular, we have defined six classes (3 violent and 3 non-violent),
motivated by the nature of the audio signals met in most movies.
The non-violent classes are:Music, Speechand Others(non violent
sounds not belonging to music nor speech, e.g. wind, water etc). As
violent audio classes we have defined:Shots, Fights (beatings) and
Screams.

II. PROPOSED METHOD

For each audio segment, a number of audio features and respective
statistics is calculated, leading to a 12-D feature vector. Afterwards,
each class is modelled by a separate Bayesian Network (BN) clas-
sifier. Each BN is used as an estimator of the probability that the
input audio sample belongs to the respective class. At a final step,
the maximum BN probability determines the ”winner” class. In the
following paragraphs a more detailed description of the adopted
methods is presented.

A. Audio Features

At a first step,12 audio features are extracted for each segment
on a short-term basis, i.e. each segment is broken into a sequence of
non-overlapping short-term windows (frames), and for each frame a
feature value is calculated. This process leads to12 feature sequences.
Afterwards a statistic is calculated for each sequence, leading to a
12-D feature vector for each audio segment. The features and the
statistics used are described below.

1) Zero Crossing Rate (1):Zero crossing rate (ZCR) mea-
sures the number of time-domain zero crossings, divided by the
frame’s length ([6]). It is computed using the equation:ZCR =
1
N

∑N−1
n=1

|sgn{x(n)}−sgn{x(n−1)}|
2

, wheresgn(.) stands for the sign
function, i.e.,sgn{x(n)} = +1 if x(n) ≥ 0 and−1 if x(n) < 0.
Theaverage valueof the feature sequence was computed as the final
feature value.

2) Spectrogram Feature (2 features):The spectrogram is firstly
calculated using a Short-Time Fourier Transform. At a second step,
the mean value of the spectrogram for each window is calculated,
leading to a single-dimension feature vector. From this feature
sequence, two statistics are extracted and used as final features: a)
the standard deviationand b) themaximum valueof the sequence.

3) Chroma Vector Features (2 features):The chroma feature
vector has been widely used in music detection algorithms ([7]). It
is computed by the logarithmic magnitude of the Discrete Fourier
TransformF : vk =

∑
n∈Sk

Ft(n)
Nk

, k ∈ 0..11, whereSk is a subset
of the frequency space andNk is the number of elements inSk.
Each of the binsSk expresses one of the 12 pitch classes existing in
western music, and therefore each of the chroma bands is separated



Fig. 1. Music Chroma Fig. 2. Speech Chroma

by one semitone. This feature specifically addresses the properties of
western musical signals. The chroma vectorvk is computed for each
frame i of the audio segment, resulting in a matrixV with elements
Vk,i.

Two features are calculated from the above feature vector:

• Chroma Feature 1: The first chroma-based feature is extracted
by calculating the deviation between chroma coefficientsk ∈
0..11 in each framei. For this feature, non-overlapping windows
of 100 msecs have been adopted. Furthermore, themean value
of the feature sequence was used as the final statistic value.

• Chroma Feature 2: The second feature based on the chroma
vector is a measure of deviation between successive frames for
each chroma element. This stems from the observation that in
music segments there is at least one chroma element with low
deviation for a short period of time (fig. 2), while in speech
segments, the deviation of each chroma element is high (fig.
2). To compute this second chroma-based feature, a sort-term
window of 20 msecs has been adopted, whilethe minimum
deviationof the chroma coefficients was computed for every10
frames, i.e. a mid-term window of200 msecs was used. Finally,
the median valueof the mid-term statistic is computed.

In Figure 3, the histograms of the second chroma-based feature (i.e.
the median value of the second chroma feature vector) is presented
for three classes: Music, Speech and Shots. It is obvious that for
music signals, the value of the feature is generally small.
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Fig. 3. Histogram of the median value of the Chroma2 feature sequences of
”Music”, ”Speech” and ”Shots” audio segments.

4) Energy Entropy (1):This feature is a measure of abrupt changes
in the energy level of an audio signal. It is computed by further
dividing each frame into K sub-windows of fixed duration. For
each sub-windowi, the normalized energyσ2 is calculated: this
is the sub-window’s energy, divided by the whole frame’s energy.
Afterwards, the energy entropy is computed using the equationH =
−∑K−1

i=0 σ2 · log2(σ
2). K was chosen to be10, while the adopted

statistic for this feature is themaximum value.
5) Spectral Rolloff (1): Spectral rolloff ([6]) is defined as the

frequency binmR
c (i) bellow whichc% of the magnitude distribution

of the DFT coefficients is concentrated, i.e.
∑mR

c (i)
m=0 m · |Xi(m)| =

c
100

∑N−1
m=0 m · |Xi(m)|. This feature is a measure of skewness of

the spectral shape. In the current work, we definec to be equal to
80%. Furthermmore, themedian valuewas used as a statistic.

6) Mel-frequency Spectral Coefficients (4):The filter bank used
for the computation of the MFCCs consists of40 triangular band-
pass filters, with bandwidth and spacing determined by a constant
mel-frequency interval. The first13 filters are linearly-spaced with
133.33Hz between center frequencies and are followed by27 log-
spaced filters, whose filter centers are separated by a factor of
1.0711703 in frequency. The adopted filter bank covers the frequency
range0−8KHz, suggesting a sampling rate of16KHz. In the current
work, the first three MFCCs were computed. Themaximum valueand
themaximum to meanratio were used as statistics for the first MFCC,
the standard deviationfor the second and themedian valuefor the
third.

7) Pitch (1): To calculate the pitch contour, the autocorrelation
pitch detection method has been adopted. As a statistic, we have
used thezero ratio (i.e. the percentage of frames with zero pitch)
of the pitch sequence. This is a measure of harmonicity of the input
audio segment.

TABLE I
WINDOW SIZES AND STATISTICS FOR EACH OF THE ADOPTED FEATURES

Feature Statistic Window (msecs)
1 Spectrogram σ2 20
2 Chroma 1 µ 100
3 Chroma 2 median 20 (mid term:200)
4 Energy Entropy max 20
5 MFCC 2 σ2 20
6 MFCC 1 max 20
7 ZCR µ 20
8 Sp. RollOff median 20
9 Zero Pitch Ratio − 20
10 MFCC 1 max/µ 20
11 Spectrogram max 20
12 MFCC 3 median 20

B. Classification Method

1) Multiclass Classification Scheme:In order to achieve multi-
class classification, the ”One-vs-All” (OVA) classification scheme has
been adopted. This simple but very accurate approach for the multi-
class classification task ([8]) is based on decomposing the K-class
classification problem into K binary sub-problems. In particular, K
binary classifiers are used, each one trained to distinguish the samples
of a single class from the samples in the remaining classes, i.e. each
class is opposed to all the others. For example, for the present audio
classification task, one of the single binary classifiers is trained to
distinguish a speech signal for non-speech signals. In the current
work, we have chosen to use Bayesian Networks (BNs) for building
those binary classifiers. As described below, the BNs are used to
determine the probability that a sample belongs to one of the classes.

2) Binary Classifiers: In this paragraph, a description of the
Binary Classifiers, that compose the OVA architecture, is presented.
At a first step, the 12 feature valuesvi, i = 1 . . . 12 described in
Paragraph II-A, are grouped into three 4D separate feature vectors:

V (1) = [v1, v4, v7, v10] (1)

V (2) = [v2, v5, v8, v11] (2)

V (3) = [v3, v6, v9, v12] (3)



This grouping was randomly applied and in future work a more
sophisticated combination could be used, taking into account the
statistical independence of each feature dimension. Afterwards, for
each one of the 6 binary sub-problems, three k-Nearest Neighbor
classifiers are trained on the respective feature space. In particular,
each kNN classifierKNN j

i , i = 1 . . . 6 and j = 1 . . . 3 is trained
to distinguish between classi and all i′ (not i), given the feature
vector V (j). This leads to three binary decisions for each binary
classification problem. Thus, a 6x3 matrixR is defined as follow:

Ri,j =





1, if the sample was classified in class
i, given the feature vectorV (j)

0, if the sample was classified in class
not i, given the feature vectorV (j)

(4)

Let us consider, the following result matrix:

R =




1 0 0
0 0 0
0 0 1
0 0 0
1 1 1
0 0 0




(5)

For example, the fact thatR1,1 = 1, indicates thatKNN1
1 (i.e.

the KNN classifier of the first binary sub-problem that functions
on the feature space of theV (1) feature vectors) decided that the
input sample is music. The other two kNN classifiers of the same
binary sub-problem decided that the input sample is non-music. The
emerging subject here is to decide towhich class the input sample
will be classified, according toR. An obvious approach would be to
apply a majority voting rule for each binary sub-problem. Though,
in the current work BNs have been adopted: each binary subproblem
has been modelled via a BN which combines the individual kNN
decisions to produce the final decision, as described in the sequel.

In order to classify the input sample to a specific class, the kNN
binary decisions of each subproblem (i.e. the rows of matrixR) are
fed as input to a separate BN, which produces a probabilistic measure
for each class. BNs are directed acyclic graphs (DAGs)that encode
conditional probabilitiesbetween a set of random variables. In the
case of discrete random variables, for each nodeA, with parents
B1, ..., Bk a conditional probability table (CPT)P (A|B1, ..., Bk) is
defined. In this paper, the BN shown in figure 4, has been used as a
scheme for combining the decisions of the kNN individual classifiers.
We will refer to this type of BN as the BNC (Bayesian Network
Classifier, [9]). NodesRi,1, Ri,2 andRi,3 correspond to the binary
decisions of the kNN individual classifiers for thei-th binary sub-
problem and are called hypotheses (also rules or attributes) of the
BN, while nodeYi is the output node and corresponds to the true
binary label.Yi, like the elements ofR, is 1 if the input sample really
belongs to classi, and it is0, otherwise.

R
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 R
i,2
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Fig. 4. BNC architecture

In the BN training step, the CPTs of each BNi are learned

according to the set ([10]):

S(i) = {(R(1)
i,1 , R

(1)
i,2 , R

(1)
i,3 , si,1), . . . , (R

(m)
i,1 , R

(m)
i,2 , R

(m)
i,3 , si,m)}

(6)
wherem is the total number of training samples,R

(k)
i,j is the result

of j-th kNN classifier (j = 1, . . . , 3) for the j-th feature vector of
the k-th input sample (k = 1, . . . , m), and si,k is the true binary
label for the k-th input sample and for thei-th binary subproblem.
In other words,si,k is defined as follow:

si,k =

{
1, if the k-th sample’s true class label isi
0, if the k-th sample’s true class label isi′ (not i)

(7)
Each setS(i) is generated by validating each individual kNN

classifier (with resultsRi,j) with a test set of lengthm, in our case
a set ofm audio segments with known true class label.

Each BN i, makes the final decision for thei-th binary sub-
problem, based on the conditional probabilityPi(k) = P (Yi(k) =

1|R(k)
i,1 , R

(k)
i,2 , R

(k)
i,3 ), i.e. the probability that thek-th input sample’s

true class label isi, given the results of the individual kNN classifiers.
The process of calculatingPi is calledinferenceand it is in general a
very time consuming task. However, for the adopted BNC architecture
no actual inference algorithm is needed, since the required conditional
probability is given by the CPT itself, that has been learned in
the training phase. Another advantage of the specific architectureis
that no assumption of conditional independence between the input
nodes is made, like e.g. in the Naive Bayesian Networks. After
the probabilitiesPi(k), i = 1, . . . , 6 are calculated for all binary
subproblems, the input samplek is classified to the class with the
largest probability, i.e.

WinnerClass(k) = arg max
i

Pi(k)

III. E XPERIMENTAL RESULTS

A. Datasets and System Training

In order to train and test the proposed system,6 datasetsDi,
i = 1 . . . 6 consisting of200 minutes of movie recordings have
been compiled. Almost5000 audio samples have been extracted and
manually labelled as ”music”, ”speech”, ”others”, ”shots”, ”fights”
and ”screams” (almost800 samples per class). The duration of those
audio segments varies from0.5 to 10 seconds. The data was collected
from more than30 films, covering a wide range of genres (e.g. drama,
adventure). Some of the films were chosen not to contain violence,
and were therefore used only for populating the non-violent classes.
The data collection process was carried out by4 different persons
and the true label of each audio segment was set only according
to the audio information. In other words, when establishing ground
truth, the labellers were working directly on the audio stream of each
movie and were actually using auditory sense alone. In order to train
the binary sub-classifiers used in the OVA scheme, six more datasets
D′

i have been created, each one containing audio samples from all
other classes, thani. For exampleD′

4 contains segments that arenot
labelled as ”shots”. After the datasetsDi and D′

i, Di, i = 1 . . . 6
have been created,20% of the audio samples are used for populating
the individual kNN classifiers. At a second step, the BNs are trained,
via the validation of the respective kNN classifiers, as described in
Paragraph II-B. Towards this end,60% of the datasets are used. The
remaining20% of the audio data is used for testing the final system.

B. Overall System Testing

In order to test the overall classification system, hold-out validation
has been used. Therefore, each of the datasetsDi andD′

i were ran-



domly separated as explained above and experiments were executed
for different selection of the subsets. In total,100 iterations were
executed. The normalized average confusion matrix (C) is presented
in Table II. For exampleC2,2 is the percentage of the speech data
that was indeed classified as speech, whereasC6,1 is the percentage
of ”Screams” segments that were classified as ”Music”.

TABLE II
AVERAGE CONFUSIONMATRIX

Classified
True ↓ Mu Sp Ot Sh Fi Sc
Music 63.31 5.79 13.48 3.67 5.67 8.08
Speech 2.10 85.06 5.40 0.96 3.77 2.71
Others 9.42 4.31 69.01 8.60 4.85 3.81
Shots 2.12 1.25 1.94 78.69 13.89 2.10
Fights 2.73 5.35 1.50 14.54 69.10 6.77

Screams 5.93 4.17 2.69 5.00 8.12 74.09

The diagonal ofC is also the recallRi of the classification results,
i.e. the proportion of data with true class labeli, that were correctly
classified in that class. On the other hand, the precision of each class
Pri, i = 1 . . . 6 (i.e the proportion of data classified in classi, whose
true class label is indeedi) is defined as:Pri =

Ci,i∑6
j=1 Cji

. The recall

and precision values of each class are presented in Table III. The
overall classification accuracy (i.e. the percentage of the data that
were correctly classified) of the proposed method is73.2%.

TABLE III
RECALL AND PRECISION PERCLASS

Mu Sp Ot Sh Fi Sc
RECALL: 63.3 85.1 69.0 78.7 69.1 74.1

PRECISION: 73.9 80.3 73.4 70.6 65.6 75.9

The percentage of73.2% refers to the classification accuracy of the
multi-class classification problem. Though this is a high performance
rate according to the nature of the problem, one may prefer to use
the proposed classification scheme as a binary classifier. For example,
the confusion between ”Shots” and ”Fights” is quite large (CM4,5 =
13.89 andCM5,4 = 14.54). This means that a large amount of data
that should classified as ”Shots” was classified as ”Fights” (and vise
versa), but in both cases the content can be also characterized as
violent. In general, this could be achieved by classifying each sample
with class label 1, 2 or 3 as ”Non-Violent” and the samples with class
labels 4,5 or 6 as ”Violent”. It is obvious that the recall and precision
values for the violent class would therefore be computed using the
following equations:

Reviolence =

∑6
i=4

∑6
j=4 Cij∑6

i=4

∑6
j=1 Cij

(8)

Prviolence =

∑6
i=4

∑6
j=4 Cij∑6

i=1

∑6
j=4 Cij

(9)

Applying equations 8 and 9 given the computed confusion matrix,
the violence recall was found equal to90.8% and the violence preci-
sion equal to86.6%. This means that the overall binary classification
accuracy was almost89%.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a multi-class audio classification system
for movies, with respect to violent content. In total, six audio classes
were adopted (three of them violent). Exhaustive examination resulted

in a number of audio features stemming from the nature of the signals
in the specific classification problem. The classification scheme was
generally based on the One Versus All architecture. Each class was
modelled using a Bayesian Network which was used as an estimator
of the respective class probability, given the input sample. To extract
the above probability, each BN was used as a combination scheme
for classifying a set of three audio feature vectors into the classes of
each binary sub-problem of the OVA architecture.

The proposed scheme was tested using more than 3 hours of
audio recordings from more than 30 movies, covering a wide range
of genres. The overall performance of the multi-class classification
system was found to be equal to73.2%. This is a high classification
performance, taking into account the number of classes and the fact
that some classes are quite similar (i.e. the classes ”Shots” and
”Fights”). Finally, the proposed system could also be used as a binary
classifier for the ”Violent” - ”Non Violent” problem. In this case of
binary classification, almost9% of the violent data was incorrectly
classified (false negative rate), while less than14% of the non-violent
data were classified as violent (false alarm rate). The overall binary
classification error is therefore almost11%.

To sum up, the proposed method can be used both as a multi-class
audio classification system, but also as a binary classifier, resulting
(as expected) in different performance rates. For example, one could
use the system for blocking violent content in movies with a high
performance rate (binary problem), while more detailed semantic
information could be obtained from the six-class classification results,
with an error rate of almost26%. In the future, new features could
be examined and used, in order to achieve boosted performance of
the classification task. On the other hand, more classes could be
added in the classification problem, in order to have a more detailed
description of the audio data. Furthermore, an audio segmentation
algorithm could be implemented and combined with the audio
classification scheme. Finally, the audio classification system could be
combined with synchronized visual cues for increased classification
performance.
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